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HEAOC 1
REDUCED X-RAY COUNT DATA

T7-075A-03A

This data set has been restored. There were originally three
9-track, 1600 BPI tapes written in Bimary. There is one restored tape.
The DR tape is a 3480 cartridge and the DS tape is 9-track, €250 BPI.
The original tapes were created on a 3081 computer and the restored
tapes were created on an IBM 9021 computer. The DR and DS numbers along

with the corresponding D numbers are as follows:

DR# DS# D# FILES
DRO04823 D5004823 D043233 1
D043234 2
DQ43235 3

© D043235: Read error occurred in record 4176 of file 1.




77-075A-03A
HEAO-1

REDUCED X-RAY COUNT DATA

THIS DATA SET CONSISTS OF 3 TAPES. THE TAPES ARE 9-TRACK, 1600 BPI,
BINARY, WITH 1 FILE OF DATA AND CREATED ON AN IBM 360 COMPUTER. THE

DD AND DC NUMBERS ALONG WITH THEIR TIME SPANS ARE AS FOLLOWING:

DD# DC# TIME SPANS
D-43233 C-29051 01,06,/77-01/20/77
D-43234 C-29052 01/11,/77-03/08/717
D-43235 C-29053 02,09/77-02/04/77(2)




HEAO-1
77-075a-03A
REDUCED X-RAY COQUNT DATA

all tapes contain 1 file. All records are duplicated.

The 1st two records of each tape are an ASCII index of the
tapes contents (described on pg.3 of format). Record 2

is a repeat of record 1 to ensure recovery if the lst
record is lost due to a parity error.

The lst 16-bit word of the remaining records is the type
code (FFFD=3; FFFE=-2; FFF3= -13; FFF4=-12). The
2and 16-bit word is the logical record length (16-bit word).

The 1st part of the 3rd record contains a 17 word tape
identification record (type-3 pg 1 of format). This is

followed by a 316 word header (pgs 3-4 of format). It

contains about 50 words of information with the remaining

266 words padded with zeroes. It's followed by a varriable

number of source crossing records of 316 words. (pgs 4-5 of format}.

The following are the time spans I found:
D-43233 J.bay 371-385 orbits 60-267
D-43234 J.Day 376-432 orbits 134-999
*D-43235 J.Day 405-400 orbits 586-499(7?)

**D-43235 seems to have a problem with the time span#**
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HEAQ 1

77-075a-03B

THIS DATA SET CONSISTS OF 100 TAPES. THE TAPES ARE 9-TRACK, 1600
BPI, WITH 1 FILE OF DATA EACH, AND CREATED ON AN IBM 360 COMPUTER
THE D AND C NUMBERS ALONG WITH THIER CORRESPONDING TIME SPANS

ARE AS FOLLOWING:

D# C# TIME SPANS
D-66391 C-28940
D-66392 C-28941
D-66393 C-28942
D-66394 C-28943
D-66395 C-28944
D-66396 C-28945
D-66397 C-28946
D-66398 C-28947
D-66399 C-28948
D-66400 C-28949
D-66401 C-28950
D-66402 C-28951
D-66403 C-28952
D-66404 C-28953
D-66405 C-28954
D-66406 C-28955
D-66407 C-28956
D-66408 C-28857
D-66409 C-28958
D-66410 C-28959
D-66411 C-28960
D-66412 C-28961
D-66413 C-28962
D-66414 C-28963
D~-66415 C-28964
D-66416 C-28965
D-66417 C-28966
D-66418 C-28967
D-66419 C-28968
D-66420 C-28969
D-66421 C-28970
D-66422 C-28971(ordering replacement tape)
D-66423 C-28972
D-66424 C-28973
D-66425 C-28974
D-66426 C-28975
D-66427 C-28976
D-66428 C-28977
D-66429 Cc-28978
D-66430 C-28979
D-66431 €-28980
D-66432 C-28981(ordering replacement tape)




D-66433
D-66434
D-66435
D-66436
D-66437
D-66438
D-66439
D-66440
D-66441
D-66442
D-66443
D-66444
D-66445
D-66446
D-66447
D-66448
D-66449
D-66450
D-66451
D-66452
D-66453
D-66454
D-66455
D-66456
D-66457
D-66458
D-66459
D-66460
D-66461
D-66462
D-66463
D-66464
D-66465
D-66466
D-66467
D-66468
D-66469
D-66470
D-66471
D-66472
D-66473
D-66474
D-66475
D-66476
D-66477
D-66478
D-66479
D-66480
D-66481
D-66482
D-66483
D-66484
D-66485
D-66486
D-66487
D-66488
D-66489
D-66490

C-28982
€-28983
C-28984
C-28985
C-28986
C-28987
C-28988
Cc-28989
C-28990
C-28991
C-28992
C-28993
C-28994
C-28995
C-28996
C-28997
C-28998
C-28999
C-29000
C-29001
C-29002
C-29003
C-29004
C-29005
C-29006
€c-29007
C-29008
C-29009
€-29010
C-29011

C-29012(ordering replacement tape)

C-29013
C-29014
C-29015
C-29016
C-29017
C-29018
C-29019
C-29020
C-29021

C-29022(ordering replacement tape)

C-29023
C-29024
C-29025
C-29026
C-29027

C-29028(ordering replacement tape)

C-29029
€C-29030
€-29031
C-29032
C-29033
C-29034
€-29035
C-29036
€-29037
€-29038
C-29089




/T -C  5H-035

Center for Astrophysics

60 Garden Street Harvard College Observatory
Cambridge, Massachusetts 02138 Smithsonian Astrophysical Observatory

June 3, 1985

Dr. 8.J. Kim -

Acquisition Scientist

National Space Science Data Center
Goddard Space Flight Center

Code 633.4

Greenbelt, Maryland 20771

Dear Dr. Kim:

I was happy to receive your letter dated February 25 reopening the contact _
between our HEAC A-3 proup and the NSSDC. We have indeed neglected data submission
recently although we have been progressing with what we proposed to NASA as
necessary to ''preserve the scientific data base,' of our experiment. My basic plan
now is to proceed with the latter submission. I enclose part I of that NASA proposal,
which you should use as a basic reference to our experiment. In reference to the-;
data products listed on page 12, we are mailing by separate cover item 3. This ks
contains 10 boxes, each with 10 magnetic tapes. (This constitutes official return
of 100 of the magnetic tapes provided to us by GSFC.) _I _now propose that the hig )
ecliptic latitude BCAT, and the complete BDCAT —.DX files wi omplete -
TRVl Tod el T SRS Rhece twe Tens ail] Lo prepeses sod sepmletd

-"_—FYTQEB which T understand NASA is planning as the final "phase-down" year fgr
HEAO—If*“The tUTolTary software and documentation products discussed in sections 2.3
and 2.4 of our proposal are available, but I would appreciate your thoughts as to
their suitability and usefulness to the NSSDC. I enclose with this letter a copy of
the format documentation for the -.DX files. '

The analyzed flight data to be submitted remains as planned in section 2.2 of
ocur proposal, In this regard we have previously submitted approximately 100 finding
charts of sources in 50 publications. I enclose an additional 7 preprints of more
recent work, Again, I would appreciate vour thoughts on the usefulness of the
publication itself, or whether we would do better to extract just the 8 1/2 x 11
glossy finding chart to submit. I will add your name to our mailing list so that
you automatically receive future A-3 publications. We plan to submit the material
for unidentified sources, discussed on page 17 of the enclosed proposal, in FY86,
at the planned conclusion of our current efforts.

Please feel free to contact me for further information on our experiment,
or discussion of our reduced and analyzed data products.




DAS/di
Encl:

cc:

Proposal P1192-6-82, Part 1
Formats, Documentation

Page 2
June 3, 1985

Sincerely yours

P

Daniel A. Schwartz
Principal Investigator
HEAO-1 A-3

Scanning Modulation Collimator Preprints (7).

H.
W.
B.
H.
L.

Bradt
Roberts
Rowe
Tananbaum
Kaluzienski
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2/4/81  13:24 FORMAT FAGE 1

DaTE: 1,5-81

RUTHOR: M. CONROY

THE FOLLOWING DOCUMENTATION PERTAINS TO FORMATS FOR MERGED DATA FILES
FROM THE HEAG-1 A3 EXFEIRIMINT BND IS GIVEN IN TWQ SECTIGNS, THE FIRST
PROVIDING INFORMATION ON RETRIEVIMG DATA FILES FROM MAGMETIC TAPE. AND THE SECOND
DETRILING TRz RCTUARL DATR RECIRDE RS THEY WILL APFERR ON DISK.

THE MERGED DATA FILES FROM THE HEAOD-1 A3 EXFZRIMENT ARE DUMPED
ON S-TRACK MAGNETIC TAPE AT 1688 BPI. USING 16 BIT WODS AND YARIABLE LENGTH
RECORDS (R MAXIMUM OF 455 WLORDS). EACH TRPE RECORD WILL BEGIN WITH ONE OF
THE FOLLOWING TYPE CODES.' THERE ARE 4 POSSIBLE RECORS TYPE CODES DESCRIBED
AS FOLLOWS:
TYPE CODE -3
LEN : 18
WORZ B - 4 FILENAME
WORD 5 FILENAME 2 CHARACTER EXTENSION
Wnes 6 NG
WARS 7 MR :
WoRY 8 BLOCK COUNT OF FILE -1 ( USING 256 LDORD BLOCKS )
WORD 9 EYTE COUNT IN LAST BLOCK
WORD 18 N2
WORD 1t YIZR/DAY LAST ATCESSED "
WOeD 12 YIZT O CREATED OR MOST
WORD 13 LooReMIN CREATED OR MOST
WORD 14 N2
WORD 15 KAR
WORD 16 N
WORD 17 hoE
WORD 18 Moo
WORD  19-END IL=7e
TRIS INDICATES THS STAST 0F @ NS DTS SIS, THI FIRET I8 WORDS
IDENTIFIES LHICH DRTR FILE 84D AREZ FOLLLLID IMMEDIATILY 2Y THZ DATA.
TYPI CODE : ~13
.- LEN : 18
THIS INDICATES THRT THIS TAPZ RICORD 1T &£+ EX227 DUSLICATE
OF THE PRZVIOUS TYFE CODE -3 RECORD. THISE ARE FoUND W-EM THI DETA LGS
*DOLBLE-DUMPED” TO ENSURE RICOVERY IF THE FIRST TAPE ASCORD CONTAINID
Q PARITY ERZ0R. IF MO ERRJ? OCCURRED ON THE READ OF T=Z TYPZ CODE -3
RECORD, THE TYPE CODE -13 RECORDS SHOULD ALLAYS BE 1GNIRED.
TYFI oODE -2 = e
LEN B -
o
T41S INDICATES THAT THIS TAPE PSCORD IS D276 (HICH BELONGS ) B
TO THE FILS DESCRIEED M THE LAST TYSE CODE -3 =EI780. THE @ LIGTH MEaMe =2
THAT THE REDORD LDHIIWJ_- ?ED% THIS 20I4T 7O THE = ThIS TAPE RECIRD,
TRE TARE RECTRD WILL BE EITAER 4285 WIRCE OR A5 24y LI9DS AS NECESEARY

—
.



2,481 13:24 FORMAT
TQ CCOYPLETE THIS DATR FILE, WHICHEVER IS SHORTER,

TYFE CODE : -12
LEN : g

THIS INDICATES THAT THIS TAPE RECORD IS AN EXACT DUPLICATE
OF THE PREVIOUS TYPE CCDE -2 RECORD. THESE ARE FOUND WHEN THE DATH LAS
"DOUBLE-DUMPED* TO ENSLRE RECOVERY IF THE FIRST TAPE RECORD CONTRINED
A PARITY ERROR. IF NO ERROR GCCURRED ON THE READ OF THE TYPE CODE -2
RECORD THE TYPE CODE -12 RECORDS SHOULD ALWAYS BE IGNORED.

PRGE 2



27481 13:24 FORMAT FREE 3

RUTHOR: E.J. RALPH
DATE: 121889

THIS SECTION OF THE DOCUMENTATION IS A DESCRIPTICN OF THE
DATR FILES THEMSELVES. THERE ARE ALLAYS TWJ FILES FOR EACH X-RAY SOURCE,
ONE FOR DATR FROM EACH OF THE TWO COLLIMATORS., THE FILES THEMSELYES ARE
NAMED ARCCORDING T3 THE FORMAT

R ] sodorseiP | i
A2k, DX

WHERE A IS A PREFIX DENOTING WHICH SET OF 1G@A ORBITS THE DATA IS FROM.

(R = B-289. B = 1@2B-1595, ETC.). FOLLOWED BY A 1 OR 2 WHICH

SPECIFIES MC1 (38 ARC-SECOND COLLIMATOR) OR MC2 (128 ARC~SECOMD COLLIMATOR).

sioiick 1S THE NUMBER OF THE SOURCE IN THE BINNING CATALGG, &ND P.DX IS A STANDARD -
SUFFIX, (A PRINTED COFY OF THE NUMBERS OF THE X-RAY SOURCES IN THE BINNING
CATALOG, THEIR NAMES. AND THEIR POSITIONS WILL BE SUBMITTED WITH TRE TAPES.)

IN GENERAL. THERE WILL 2E ONLY ONE TAPE FILE ON E2CH TRPE AND ALL
DATA FILES WILL BE FOUND ON TAPE FILE B. TH= FIRST DRTA FILE WILL BE AN
INDEX OF THE TRFE CONTEZNTS AND IS NAMED ACCORDING TO THE FORMAT
BDspiok PF

WHERE A IS THE SAME FREFIX AS ABOVE. DX IS STANDARD. AND sk IS THE
NUMEER IN THE WHOLE SERIES 0OF TAPES OF TRAT THOUSAND-0RSIT BATCH .

ERCH -.DX FILE IS COMPRISED OF ONE 316 WDRD HEQDER RECORD AND SOME
NUMSER (DEPENDING UPON THE NUMBER OF SOURCE CROSSINGS) OF 216 LORD INDIVIDUAL
CROSSING RECORDS. THE HEADER RECORD HAS ONLY REBOUT S2 WORDS OF INSORMATION
BUT 1S PADDED WITH ZERDES 70 316 WORDS FOR CONSISTENCY. THESE RECORDS BREAK
DOWN RS FOLLOLIS:
DF - DOUZLE PRECISION
1 - INTEGER
R - REAbL
I ~ INTZGER ARRAY
RE - REAL ARRaY
LIC=D TYFE LENGTH DESCRIFTION

HEADER RECORD-- .
1 DF 4 DOUBLE PRECISION TIME (JID)OF MINCR FRAME AT
CENTE® OF CROSSING

5 3l 3 TIME OF FILE CREATION

g 31 3 DRTZ OF FILE CREATION
1t ! SOURCE # I8 BINNIMG CAT2L0G
12 I ! MCL DR MC2

13 3RA 18 SOURCE VECTORS

31 1A 19 SOURCE MAME
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13:24 FORMAT FRGE 4
TWEARK BNGLES
FULL WIDTH HALF MAXIMUM FOR MC

BAND SPACING

DOUBLE FRECISION TIME (JD) OF MIMDR FRAME AT
CENTER OF CROSSING

MINOR FRAME AT CENTER OF CROSSING
COLLIMATOR =+

ORBIT =+

SQURCE # IN OUR CARTALOG

SUN FRESENCE-RBSENCE

AZIMITH RESTDURLS FOR ORBIT (ASPECT)
ELEVATION RESIDUALS FOR ORBIT (ASFECT)
# GO0 STARS (ASPECT)

# BAD STARS {(RSPECT)

# TOTAL STERREZ (ASFECT

RZIMUTH RESIDUALS FOR SEGMENT {(RSFELT)
ELEVATION RESIDUALS FOR SZGMENT (BEPELCTH
RVERRGE ANGLE TO SOLID ERRTH

RYERE5E RATE (SUMMED CHANNELS AEC:
RYERRGZ RATE (CHAMNEL A)

AVERAGE RATE (CHAMMEL B

AVERFZZ RRTE (DHAKNEL O

SIHGLS BIN MRxIMIM S6TE (SUMMED CHRMMELS RED)
SINGLE BIN MR®IMUM RETE (CHANNEL R)
SINGLE BIN MAXIMUM ERTE (CHANNEL B8
SINGLE BIN MAXIMUM RATE (CHANMEL C»
SINGLE, RIN MINIMJM EATZ (SUMMZD CHANNELS ABC)
SINGLE BIN MINIMUM RATE (CHANNEL 02
SINGLE BIX MINIMJM RSTE (LHGMNEL Bl

S5INGLE BIN MIMIMUM RATE (ZHANNEL Co
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13:24 FORMAT
AVERAGE PSD RATE

AVERAGE FSD EXPOSURE
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78-103a-02C
HEAO-2

X-RAY DATA OF JOVIAN AURORAE

THIS DATA SET CONSISTS OF 1 TAPE. THE TAPE IS 9-TRACK, 1600 BPI,

BINARY, WITH 1 FILE OF DATA. IT WAS CREATED ON AN IBM 360 COMPUTER.,

- THE DD AND DC NUMBER ALONG WITH IT’S TIME SPAN IS AS FOLLOWING:

DD# DC# TIME SPAN (OBSERVATIONS)

—— e - - - S D D W e b R S R AL e e

D-73981 C-031237 04/13/79 - 04/13/79
11/24/79 - 11/24/79
12/03/79 - 12/03/79




January 27, 1986

Dr. $ang Kim

RecBee

GIFC/NASA  Cod 663
Gmu..’u“’, Mh 20671

Dear Dr. Kim,
Thank . you for your request for Einstein data on Jupiter. The
ctigta on Jupiter is con HRI sequence 9999. We have written

e original field (DAT) and throe Gaussian smoothings of width 64, 128,
and 2 ameconthzenclosedFlTSta Thetapewas at1660

All of are_integer, an have been scaled to a maxunum
value of 4000 Ech field 18 256*256 in 1{? dimensions, has tzon
1 -2 30 35 el

of 1 arcsec/ Eu(l),gndwasoenteredon 23641DEC
values 2150, 202 Please let us know if you have any difficulties wi

the enclosed data, or if you require more m?ormauon

Sincerely,

Vel Jureet

Fred Seward/Sherene Aram
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Albert E, Me t'.zger-1 '

Abatract. X rays in the energy band 0.2-3.0
keV have been detected coming from both polar
regions of Jupiter. The observetions were made
in 1979 and 1981 by using the imaging propor-
tional ocounter - and high resolution imaging
detectors on the Einstein X ray astronomy satel-
lite. zTh measured flux density of “6 x
107%™ <a™"! at ag:tg_ corresponds to an X ray
lupinoaity of V4 x 19 e 0.2= to 3.0-keV
energy band. The enﬁﬁﬁuu of the X rays
is extremely scf't and can be characterized by a
power law vith an exponent of “2.3. Detector en-
ergy resolution is insufficient to distinguiah a
soft line spectrum from a continuum. However,
the shape of the response and the cbaerved X ray
power indicste that the source of this auroral
eeission ia not electron bremsstrahlung as on
the earth, but ias most probably line emission
Trom O and S ions with energies between 0.03 and
4.0 MeV/nucleon precipitating from the outer
boundary of the Io plasma torus at L ™ 8.

[ SRR

X raya are generated by the interaction of
an energetic particle flux with matter and are
produced on a Planetary scale in the earth's
aurorae [of. Jones, 1974). After the existence
of the Jovian magnetosphere was established by
the observation of nonthermal radio emission
[ef. Berge and Gulkis, 1976), estimates of its
expected X ray luminosity were made by scaling
Trom terrestrial aurorae to the Jovian field
[furley, 1972; Heasps et al., 1973]. There was
alse speculation that bombardment of the
Galilean satellites by particle fluxes within
Jupiter's magnetosphere would produce substan~
tial characteristic X ray line emisajon
{Mihalov, 1973]. Such a flux could be used to
determine surface composition. The search for X
Tay emission from Jupiter has been conducted
dince 1964 by belloon [Edwards aod McCracken,
1967; Haywmes et al., 1968; Hurley, 1972; Maho-
ey, 1973], recket [Fisher et al., 1964; Margon,

Intreduction

unpublished data, 1969], satellite [Vesecky et .

1Jet‘. Propulsion Laboratory, Califernia Insti- A

tuie of Technology.
0% at NASA Headquarters. .
Centré d'Etude Spatiale des Rayonnements,
CNHS-UPS
. 5Dan13h Space Research Institute,
T\ 6&:1thson1an Astrophysical Observatory.
Flasma Fusion Center, Massachusetts Institute
"of Technolegy.

Copyright 1983 by the American Geophysical Union.

Paper number 341049 .
0148—0227/83/0031-10“9505.00

THE DETECTION OF X RAYS FROM JUPITER

. |©

(943

avid A. Gilmn"a, Joe L. Luthey’. Kevin C. Hurley3

’ Schnopperu, Frederick D. Seuards, James D. S.ul.‘l.ivran6

al., 1975; Hurley, 1975), and spacecrsft [Kirsch

et al., 1981}, In this paper we report the ;
first detection of the Jovian X ray flux, an
observation mede by the Einstein (HEAO-2) Obser-

vatory in April 1979 [Metzger et al., 1980], and €

three subsequent observations that bave also

¥ielded positive results. p
Because of measurements made by the Pioneer

10 and ]l and the Voyager 1 and 2 spacecraf't, e

[Opp, 1974, 1975; Stone, 1981], we now know that .-

Jupiter's magnetosphere is significantly dif- !

ferent from the earth's. On earth, X rays are

produced by the same energetic particles that ?

make the visible aurcra--trapped and almost

trapped electrons suppiied by the solar wind and N l

energized by magnetospheric convection-- which

precipitate into the atwosphere along high lati- ?

tude field lines [Jones, 1974; Seltzer and .

Burger, 19T4; Mizera et al., 1978]. Unlike the

earth, particles are injected into the Jovian .

magnetosphere from Io, located deep in the mag-

netosphere, by means of epuptive gas plumes,

atmoapheric loss, and surface sputtering [of. -

Cheng, 1980; Goertz, 1980a)]. These particle

fluxes become ionized to form a plasma torus in

the neighborhocd of Io's orbit [Broadfoot et

al., " 1979]. Ionmization pickup from Jupiter's

atmosphere, sputtering from the surfaces of the

other Galilean satellites and ring particles,

and the solar wind are secondary contributors.

The Pioneer and Voyager spacecraft have measured

the charged particle and magnetic content of the

magnetosphere, but the X ray observations tell

Something else--the power flowing through the

Jovian magnetosphere and the pechznism of energy

transfer. We have used the observed X ray speg-

trun and 4its spatial distribution to infer the

rature of the flux precipitating onto the planet

and the power lost from the magnetosphere to the

atmosphere in the process. This power is a

lower limit to the power delivered to the magne-

toaphere from the rotation of the planet, the

injection of material from orbiting bodies, and

the zolar wind.

2. Location

2.1. lInaging Proportiopal Counter Qhservations
The Einstein Observatory carried an X ray
telesgope substantially more sensitive than any
2-50 X (0.2-5 keV) instrument previcusly placed
in orbit [Giecconi et al., 1979}. Of the four
detector systems capable ¢f being placed at the
focus ‘of the telescope, the poaition-sensitive
iprging proportional counter (IPC) was chosen
for the initial observation since it offered the
most sensitivity for detection together with
good spatial resolution [Gorenstein et al.,
1981). The field of view of the IPC was one
squars degree, and ita effective ares averaged
60 o over an energy range of 0.2 to 4 keV.
Its angular resolution was 1 are min above 1
keV, degrading somewhat with decreasing energy.
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Plate 1.

Motoger et Ll

The first X ray izage of a planetary body:

X KHays 4'ron supiter

JUPETER

Jupiter (circle} as seen by

the Einstein Observatory satellite on April 13, 1976.

The IPC abservations were perforred with
Jupiter near quadrature in order to satiafy
observatory sun-angle constraints and reduce the
planet's azpparent motion. A probable positive
result was obtained on April 13, 1979, but
because the source was weak and the field of
view rich with sources of comparable intensity,
further observations were made on November 24
and December 3, 1979. These confirmed the ini-
tial detection, permitted an investigation into
the varlability of the source, and allowed us to
distinguish ir part between planetary emission
versus poessible emission from one or more of the
Galilean satellites. Contrasting configurations
of Io, Europa, and Ganymwede were chosen for the
three IPC observations with respect to maximiz-
ing their elongation from Jupiter, the possibil-
ity of a2 Jupiter occultation during an observa-
tion, and their location east or west of the
planet. The observing periods were between 10
and 20 hours long for each of the three obseryi-

tions, During this time, Jupiter moved 1 to 2
arc min across the sky--aboui the size of the
IPC image resclution.

X rays from Jupiter were dstected over =z
range from 0.2 to 3 keV. Plate 1 shows ths
image obtained in April, 1979. (Note: Plate i

is shown nere in black and white; the ccler ver-
slen can be found in the special enizr  seciion
of the journal.) The observing pericds, counting
rates, and accumulation times for the three IPC
observaticns are shown in Table }. The hack-
ground rates were about 3Ci, 50%, and 7.2 of the
observed counting rates in April, November, and
December, respectively, owing to changes in
apparent sky brightness. While “he November nd
Decembar observations were made with Jupiter at
the center of the field of view, it ran be coen
from Plate 1 that the tel<scous

Hedrly

the planet in the April observation, and a sub-
stantial <correction for vignetting has been
applied to this measurement. The corrected net
count rateés of the source for the three cobserva-
tions are the same within the excerimental
uncertainties. More precise values are expected
when reprocessed data becomes available.

For each observation, Table 2 shows the
separation between the observed source position
and the positions of Jupiter and the Galilean
satellitss. Because the center of the field of
view during the April observation was far from
the planet, the uncertainty in the position of
the scurce is about 1.0 arc ain rather than the
C.7 arc mwnin accuracy obtained for the November
and December observations. These uncertaintiea
reflect the oaverall spectral shape, which is
predopnirantly soft. The expected uncertainty of
the three cbservzilions combined is 0.99 arc min,
50 that the RMS combired separation in the last
colunn of Table 2 is 2lso the number of standard
deviaticrns.

It czn be :zen from Table 2 that Jupiter
falls <¢loseat to thz source location when the
three obzervations are considered as a set and
that none =f the individual separations is large
enough to precluiz the assoctation. Io is vir-
tually ruled cuc  on the basis of the Dacember
observation., GCanyzsde appears to be eliminated
by the Novembar observation, Europa by those of
November and Dec:zmber, while Callisto was never

a s=erious possibility, located as it is in the
nuter part of trne magietosphere. There are
additional rEzZions for ruling out Europa.

Turopa Wwais ¢ast ¢ Juplter in April anc west in
levember o0 thet its trailing face was visible
in April Wit ot in Novenmber. Because the
Jevian pagretoopnere rotates faster than Europa

orbits Juoiter, 2ac¢ tho particle bounce time ia

T
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TABLE 1. ¥Net Source Rates: (.2-3.0 kev (c/s)
Time UT Effective Sourcs and
Start  Stop Time, 8 Background Background Net
April 13, 1979 0100 0639 5986 0.018 ¢ 0.002 0.006 % 0.001 0.012 + 0.002
Nov. 24, 1979 0222 1710 5276 0.025 £ 0.5902  0.012 = 0.001 0.013 + 0.002
Dec. 2, 1979 0213 0749 £53238 0.041 + 0.G02  0.029 & £.00! 0.012 = 0.002

short in comparison with the time it takes a
Tield line to pass the satellite, we expect that
the trailing face will produce pany more X rays
than the leading face. No such contrast was
observed between the two observations. In addi-
tion, Europa was occulted by the planet for 3.2
hours during the April cbservation without pro=
ducing & noticeable reduction in the count rate.
Jo wks occulted during portions of both the
November and December observations, but unfor-
tunately no useful data was received during
these periods.

As Table 1 indicates, the average ocounting
rate is quite constant for the three observaw
tions, with a time-weighted average value of
0.012 2 0.002 counts per second from 0.2 to 3.0
keV. We have examined the time profile of each
observation with selected time intervals from
500 s to 3000 5. With the exception of one
1000-8 period during the December observation,
Feserved for further atudy with reprocessad
data, no aignificant (>30) flux variation haa
been seen.

2.2, dligh Feaolution Imager Qhservation

To confire that Jupiter i3 the source of
thiz X ray flux and to determine its distriby-
tion at the planet, a fourth observation was
this time utilizing the high resolu-
tion inaser_(BRI) &3 the detector [Gilacconi et
al., 1979]. The HRI consisted of two microchan-
nel pletes operated in casoade, followed by =&
crossed-grid charge detector mede of two orthog-
onal planes of wires, Its field of view was the
central 25 are min of the telescope field, and
its angular resclution for a strong source was
about 4 arc sec., Vhils responding to essen-
tially the same energy range of 0.15~3 keV as

TABLE 2.

the IPC,
resolution.

The HRI observation was performed in Janu- -
ary 1981, shortly before the end of the Einstein
Observatory's useful lifetime.
less time was available than was considered
necessary to assure a positive result, particu-
larly if the scurce was widely distributed,
e.g., as diffuse emission across the planet. Six
hours of observation yielded 7336 s of useful
data. Despite this 1imitation, two distinet
sources of emission were resolved! The cne
other source in the field of view was well
removed from the Jovian system and not associ-
ated with planetary emission.

the HRI possessed no effective energy

The two spurces at the center of the field '’

of view are shown in Figure 1, superimposed on a
map of Jupiter and the Galilean satellites which
shows the movement of these cbjects during the
observeation., The positions of the two sources
are cleerly not assoclated with any of the
Galilean satellites. 'Neither can they be asso-
clated with Jupiter's rings which are situated
&t equatorial latifudes. Both sources clearly
represent high latitude near-polar emission from
the planet itself. '
Plate 2 shows the shape and extent of the
two sources as distributions generated by a
standard processing routine and smoothed by =a
Gaussian runction. {Note: Plate 2 is shown

here in black and white; the color version can -

be found in the special section of the journal.)
The distributions, which present three levels
covering a factor of 2 in intensity, are super-
loposed on a disc of Jupiter placed at fts mean
position during the observation, The two
sources are irregular 1in shape, with a mean
extent ¢f about 20 arc sec. Their maxima lie
within 10 arc seo of Jupiter's northern and
scuthern poles. The north-south elongation of

IPC Observations - Proximity of Source to Mean Position

of Jupiter and the Galilean Satellites (arc min)

For this reason -~ -

Object April 13, 1979 November 24, 1979 December 3, 1979 RMS Combined
Jupirer 0.4 1.6 c.9 1.3
"In 1.9 (W) 0.9 (W) 2.0 (0 2.1
Europa 0.5 (0-E) 3.9 (F) 3.3 (W) 3.6
Ganymede 1.9 (E) 2.7 (W) 0.4 (E) 2.3
Callisto 5«3 (E) 6.4 (W) 7.8 (E) 8.1

(M), (), (0) = West, East, Occulted
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|
|
|
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g

5 T ‘ ‘ The lack of any epharcement 1n emissicn
2 T Ganymede - equatorial latitudes shows that no diffuse ccl
3 = ' ponent has been detected. The relatively 3hos
X , sper 3 to s, | durstion of the cbservation limits the signif

: A ! 5 cance of this result.
o = ) Eorepa . 1 The measured emission intensities of t:
i g 57 3. . 1 norghern and southern sources are 3.4 * 1.2
h £ : 1107 g/s from the morthera source and 3.3 = ©
‘ 8 5 : x 1077 ¢/s from the southern, based on 37 and .
a 1 total counts, respectively. The backgrous
':Hc.m,., . ’ computed from large source=-free areas, amoun
Ty 1 to about one-half of this. These rates iaoclu
,,_” . =mall corrections for dead time, vignetting, 3
) ) . detector quantum efficiency, and are conaiste
WE N TR N A s By .. 0 el with the intensities observed in the IPC obse
RIGHT ASCINSION 1dg: vations, based on the relative efficiencles
Fig. 1. Location of Jupiter and the Galilean the two detectors. The combiped rate for t

satellites during the high-resolution imaging two aourceg oo spands to a luminosity
observation on January 6, 198l. The numbers Jupiter of(4 x 10 v erg/s.

correspond to position during the ohservation

which bagan at 2.1 h UT and ended at 7.8 h

UT. The quadrilaterals mark the gensral out= 3. Spectrua

line of the two sources assoclated with

Jupiter, the interior squares the approximate 3.1 Qbservations :

location of their maxima. i

In each of the three IPC observatl

both sources is greater than expected from periods the shape of the source spectrum is &
instrumenta) dispersion, which indicates that tinetly different from the background measus
these are not point sources. The maximum of the in the immediate vicinity of the source. The :
scuthern source is located about 10 are sec (background-subtracted) count rate spectra :
beyond the dise, which indicates the magnitude shown in Figure 2. Associated 1¢ uncertaint:
of the positional error aince the atmospheric are based on counting statistics. The upper .
interaction that generates the X ray flux nust channels have been paired improve statisii:
ocour at scale heights of roughly 1,000 km (v0.5 The IPC provides only modest spectral re.
are sec) or less. An elongated distribution in lution, and absorption in the thin polypropyl:
the direction of Jupiter's motion is not window results in large variations in the ef'f:
apparent, suggesting that the source area will tive detector area over the energy range [Gor

broaden when the effect of Jupiter's motion is stein et al., 1981]. To deal with this,
removed. HEAQ=-2 consortium has developed computer <o

e V.

.

Piate 2. Intensity distribution of Jupiter's auroral X ray sources superimposed
on an outline of the planetary disc. The measurement was made by the High Resolu-
tion Ipager on the Einsteln Cbservatory. The straight line corresponds to the
equator, Motion of tne planet is from right te left.
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r\ that generate the pulse-height spectrum expected

for a model-dependent incident photon spectrum.
Within the limitations of detector resoluticn
and low counting rates, we have used these not
only to define the range of spectral parameters
pergitted by the observations, but- also to
tranaforas net count rates into flux and obtain a
representation of the incident spectrum. The
best fit perameters obtained by modeling each
IPC count rate spectrum for the power law
response resulting from electron brewsstrahlu
are given in Teble 3. The percentile of the X
distribution, F (¥x*), is included to show the
quality of fit.

Ansuming the incident flux to be a power
Jaw and correcting for the instrument response
of the detector, the resultant photon flux is
shoun in Figure 3 and compared with the upper
limits established by previous searches, It can
be seen that the most sensitive of these fell
short of detection by well over an order of mag-
pitude.

3.2. Eleciren Incidence

Since the observed X rays come from the
planet and not from the moons or rings, we can
sake an estimate of the power delivered to the
atmosphere of Jupiter based on the assumption
that the incident particles are energetic elec-
trons. Other mechanisas of energy loas exist so
this power im a lower limit to the rate at which
energy flows through the Jovian magnetosphere.

The efficiency for making X rays as elec-
tron tbremastrahlung from hydrogen has been cal-
culated for power law distributions of electrons
into hydrogen. / These calculations have been
nade from photonattenuation data tabulated by

_ Veigele [1973), and from extrapolations of cross
section tables [Pratt et ul., 197T].and electron
range tables [Pages et al., 1972]1) The effect
of scattering on the depth distribution has been
neglected in the calculations, but estimates of
the scattering give values less than 10° for all
tlectrons of interest--hydrogen is not an effec-
tive acattering medium., Furthermore, electrons
bave ranges very much shorter than the mean free
paths of equal-energy photons. This gea.ns that
for electron spectra steeper than B¢, scatter-
ing has no effect on the emission efficiency.

The procedure followed was to take an ini-
tial power law spectrum of electrons, find the
spectrum of electrons at a number of depths in
the atmosphere, compute the source function for
& given photon energy, and then find the flux of
X rays that escape. This was done for ten pho-
ton energies between 0.1 and 10 keV, emphasizing

A Rays Froa Jupiter
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Fig. 2. The X ray count rate spectra from
Jupiter for the three imaging proportional
counter observations., Cheannels 3 through 8
have been pairgd.-'

the low energy end. The efficiency was computed
to be the ratio of emitted X ray luminosity to
incoming electron power over the energy rahge
0.3 to 2.0 keV. Power law spectra were assumed
in order to simplify the calculaticns. This ias
not a limitation since we find the efficiency
over lesa than a single decade in energy, and
over this range almosat any continucus spectrum
can be approximated by a power law.

For a given photon power law spectral index
and -intenaity, we can then calculate the power
in electrons reaching the planet with an uncer-
tainty eastimated to be as large as a factor of
3. Figure 4§ shows the 905 confidence contours
for power law spectral perameters allowed by the
three observations, together with the lines
eorrespond{gg to alsrange of electron power
between 10~ &nd 10 W. The contours fall
wit%n a 31. e decade of electron power, from
~0'Y to MO'Y W. _These high levels impecse a

severe constraint on the energy balance of the

magnetosphere which will be discussed irn the

following section,

3.3. Heavy Jon Incidence

An alternative possibility is that the
incident flux ccnsists, not of electrons, but of
heavy iona originating in the Io torus [Metzger
et al., 1981; Thorne, 1981). In this case,
interactions with atmospheric atoms will result
in characteristic line emission with a virtual

TABLE 3. Best Fit Power Law Spectra (0.3 - 3.0 keV)

Flux
Observations Index erg/cmzs F(xz)
April 13, 1979 2.3 2.7 x 1073 0.12
Nov. 24, 1979 2.4 2.6 x 10713 0.6
Dec. 3, 1979 2.1 1.5 x 10713 0.6
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Fig. 3. A comparison of measured upper lim=
its on X ray emission from Jupiter and the
initfal observation by the Einstein Observa-
tory. Voyager data is by Kirsch et al.
(1981], Copernicus data is by Vesecky et al,
[1975], Uhuru data by Hurley [1975], and all
other data has been compiled by Mahoney
{1973].

i

absence of continuum. The jon-atom collision
mechanism 1is believed to be primarily Coulomb
ionization when the iom projectiles are not
fully stripped, although electron transfer to
bound states of the ions may also contribute
[Carcia et al., 1973; Winters et al., 1975]. The
major heavy ion constituents near the Io torus
as deternined by the VYoyager uliraviolet spec-
trometer and plasma scisnce experiments [Bridge
et al., 1979; Sandel et al., 1979; Baganel and
Sullivan, 1981] are sulfur and oxygen. Modeled
as monochromatic K shell line emisaion apectra,
the IPC data produces the fits listed in Table
4. PBecauss the computer program fits one line
at a time, the analysis was done separately for
the K shell ¥ rays of oxygen at 0.52 keV using a
range of 0.25-1.45 keV, and of sulfur at 2.3 keV
using a range of 1.45-3.9 keV. Alternative fits
over the entire spgetrum give an unacceptably
high value of X° for sulfur, whereas for the
oxygen K line, the fits are about as good as for
the power law for two of the three IPC measure-
ments. Although the shape of the incident pho-
ton spectra for these two mechanisms of X ray
production cust contrast sharply, the ability to
distinguish  between them by means of the
observed spectra depends on counting 3statistics
and detector resclution. Both are limited in
this case; the integral source strength amounts
ta 5-6 o for each observation {Table 1}, while
the energy resclution {FWHM) of the IPC ranges
from 405 at 3 keV to B0f at 0.2 keV. However,
the results of the spectral analysis as sumpar-
ized in Tables 3 and 4 do permit us to conclude
that while we cannot discard electron
bremsstrahlung based on this data analysis, line
emission provides at least as good a it to the
results.

The model-dependent X ray power levels at
Jupiter that correspond to the best fit spectra
are tabulated in Table 5. Quoted uncertaintiss

v

ha

Rays lron Jupiter

incorporate both count rate statistics and pos-
sible systematic uncertainties in IPC gain lov-
els, which can fluctuate with time. The three
measurements are reasonably consistent for each
model; 4t is possible that the lower power out-
puts of the December 3, 1919 observation,
whether modeled as bremsstrahlung or Op emis-
sion, may be due to overconfining the source
area, as the IPC image size spreads subatan-
tially at energies below 1 keV. Note that the
observed Sy line emission is significantly less
intense than the 0K line emizsion.

h.' IMiscuasion

4.1. Source of Power for X ravs

Four possible sources of power may be ¢oOn-
sidered responsible for generating Jupiter's X
ray flux, f.e., the solar wind, the solar X rav
flux, the injection of loocal material, and
planetary rotation. The latter two are internal
to the magnetoaphere, whereas the solar wind and
solar X ray flux provide external energy. The
solar wind may be ruled out, as it has been for
the UV aurora, since it makes only a minor (V1)
contribution to the total power available within
the magnetosphere [Eviatar and Siscoe, 1980]. '

The possibility that the observed X ray
emissions are reflected or secondary solar X
rays was considered prior to the HRI observa-
tion. Because of the low efficiency of secandary
X ray production, the emisalon induced by the
quiet time sclar X ray flux faila tg account for
the observation by a factor of 107° This is
consistent with observations of X ray emission
from the moon in lumar orbit {Adler et al.,
1972] and from the sunlit atmosphere of the
earth [Rugge, 1978]. And independently, the
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Fig. 4. Nirety percent confidence contours
for the power law spectral parameters of the
Y ray emission, upon which are superimposed
tre levels of electron power required to gen-
erate the X ray flux by electron
bremsstrahlung.
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TABLE 4.

F

X Qays Fraa Jupiter 1737

Best Fit Monochromatic Line Spectra

O Line, 0.52 kev

Sy Line, 2.3 keV

Flux Flux‘) ”
Observation erg/cm*s F(P) erg/em<s F(x")
April 13, 1979 7.9 x 19713 0.8 .14 x 10713 0.3
Nov. 24, 1979 7.4 % 10713 0.3 4,5 x 10714 0.5
Dec. 3, 1979 4.3 x 10°13 0.3 7.8 x 10714 g.

fact that X rays are seen only near the Poles
and not from the equator shows that the X rays
are the resuit of magnetically governed
processes and not due to solar ¥ rays,

Within the magnetosphere the amount of
meterial ejected from Io by voleanic erission as
& reaut of gravitational interaction with
Jupiter and Eurcpa is substantial [Peale et al.,
1979; Cheng, 1980), but it is only weakly ener-
gized prior to lonization and acceleration.
Furthermore, the degree of ionization is low and
the energy provided by corotaticn 1s less than 1

- keV for both electrons and ions [Bridge et al.,

19791, thereby precluding the formation of keV X

rays.
It may thus be concluded that Jupiter's X
ray enission is powered by the planet's rotation
acting through other kagnetospheric processes,
In fact, the observation of MeV per nucleon ions
throughout the middle mégnetosphere [Xrimigis et
«» 1979; Gehrels et al., 1981] demonstrates
that the torus s not the only agent for
tranaferring rotational energy to the magneto-
sphere and also Provides a source of flux ener
getically capable of generating the observed X

" ray emission. Details of the eénergizing process

’Wh\ﬁ

and the apecific roles played by lons, elec~
trons, and heutral particlea is the subject of
much current study [eof. Eviatar and Siscoe,
1980; Dessler, 1980; Borovsky et al., 1981;
?;g;?. 1981, Shemansky and Sandel, 1982; Thorne,

4.2. Sources of Auroral Exqitation

Following earlier indiecations from rocket
flights [Ciles et al., 19761, the first direct
observation of aurcral emission at Jupiter was
®ade by the extreme ultraviolet spectrometer on
Voyager 1, which also estabiished a relationship
between the Io Plesma torus and the flux precip-
itating into Jupiter's atmosphere [Brozdfoot et
al., 1979; Sandel et al., 1979]. Extreme ultra-
viclet (EUV) emission does not uniquely identify
the nature of the precipitating particles,

Electrons, protons, and heavy ions are azbun-
dantly present in the plasms torus [Bridge et
al., 1979; Broadfoot et al., 1981] and each has
been considered as the auroral source,

Although hydrogen constitutes only a minor. -

ccmponent within the plasma torus [Shemanaky,
1980; Bagenal and Sullivan, 1981), energetic
protons have been proposed aa the auroral source
[Goertz, 1980b). . Protons can generate the
observed EUV emission with less power than elec-
trons, and protons are seen to be depleted along
field lines that pass through the inner portions
of the plasme torus [Krimigis et al., 1979].
However, as Qoertz [1980b] has pointed out, X

ray emission will not take Flace from a proton-

induced aurora.

4.3. Electrons as the Auroral Source

Aurcral emission has most commonly been
interpreted as dye to electrons precipitating
into Jupiter'a atmosphere [Broadfoot et al.,
1979; Thorne and Tsurutani, 1979; Coroniti et
al., 1980; Durrance et al., 198]. The mechan-
ism considered for precipitation has been the
change in pitch angle of electrons scattered by
wave~particle interactions [Thorne and Tsuru~
tani, 1979; Thorne, 1981]. Furthermore, Yung et
al. [198) have cbtained a discharge spectrum of
Hz by electron impact that closely duplicates
spectra of the aurora taken by the IUE space-

- eraft {Durrance et al., 1982].

The UV aurora is localized close to both
poelar limbs. Close concordance between the area
of the aurora and the projection of magnetic
field lines passing through the torus onto the
planet has suggested a role for Io's torus as
well as for the magnetosphere in delivering
plasma to the planet [Broadfoot et al., 1979,
1981; Durrance et al., 1982). Relative to the
mean position of Jupiter, the X ray maxima of
the HRI observation are located less than 3 and
10 are sec from the northern and southern polar
limbs respectively, indicating that the X ray

TABLE 5. X Ray Power levels at Jupiter - IPC Qbservations
(Based on Spectral Fit to Power Law or Monochromatic Line, 109w)

Observation April 13, 1979 November 24, 1979 December 3, 1983
Btffnsstrahlung 2.0 + 0.4 1.7 + 0.3 1.2 + 0.3
O K, Line Emission (0. 52 keV) 5.7 % 0.9 6.0 £ 0.6 3.3+ 0.8
5 K, Line Emission (2.3 keV) 0.8 + 0.3 0.4 £ 0.2 0.6 £ 0.2
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production is probably also occurring at the
intersection of the field lines from the torus
and Jupiter's atmosphere. This implies that X
ray and UV emisaion result from the same basic
mechanism.

For the electron-powered aurora, the Voy-
ager EUVY team has reported a radiated power
level of 5 x 1012 ¥ [Sandel et al., J979), and
from this an input level of 1.2 x 10%3 W carried
by the precipitating flux [Broadfoot &t al.,
1981]. Thii is significantly less than the mean
value of 16°3 W we derive for electron power
based on the X ray emission. However, from a
revised estimate of the UV excitation efficisncy
and associated uncertainties, and the probable
effect of atmoapheric extinction (absorption) on
the UV emisasion, Thorne [1982]lﬁa1culates an
input power range of 0.3-1.2 x 10 W with a
nominal level of more than 6 x 10 W, given an
average energy of 10 keV for the precipitating
electronas.

The issue of atmospheric absorption of the
auroral flux seems central to the question of
whether & real disparity exists between the UV
and X ray observations in terms of an electron-
powered aurora. The greater the incident elec-
tron energy, the deeper its atmoapheric penetra-

ion and the greater the UV extinetion factor.
The suggestion that the inecident electron flux
may be largely confined to l-3bkeV [Yung et al.,
1982) or limited to lower energies is not sup-
ported by the X ray spectrum, which suggests an
incident electron distribution extending up to
approximately 10 ke\')‘ By comparing two
wavelength ratios of the Jovian and laboratory
discharge spectra [Yung et al., 1982) with a
model of the atmosphere [Atreya et al., 1981],
Durracce et al. [1982] have deduced that the UV

- emission takes place at or above an altitude of

330 km, relative to the NH, cloud tops at 600
mb. This atmospheric degth correaponds to the
range of, a 25-keV electron, spproximately
1077 g/em“. The mean free path of a 0.2-keV X
ray has a comparable value so the correction for
atmospheric extinetion which has been applied
already to our bremsstrahlung power calculation
is small.

Central to the acceptance of an electron-
driven mechanism is whether enough maghetos-

" pheric power is contained in an electron-

precipitating flux to drive either X ray or UV
aurcoral emission. In order to power the aurora
even aia the relatively modest level of
1.2 x 10 W with electrons criginating in the
torus, the plasma residence time must be less
than that required to reach thermal equilibrium
[Eviatar ani Siscoe, 1980]. However, there is
substantial, though not unequivocal, evidence
for equilibration. Thermal equilibration
corresponis to a ?aas loading rate in the torus
of about & x 10°! fons/s [Shemansky, 1980]. 4an
aurora pfgered by electrona at the level of
1.2 x 107~ 4 requires a mass loading rate
greater tran 2 x 10‘9 iona/s and proportionately
more for higher power.

A disparity also exista between the
required auroral power and the power deliverable
by electrons if the electrona diffuse into the
torus after undergoing acceleration in the mag-
netosphere. The low enpergy charged particle
(LECP) experiment observed large fluxes of ener-

getic electrons in the torus down to its thres-
hold of sensitivity at 30 keV [Armstrong et al.,
1981]. These fluxes are depleted in the 1inner
torus {Lanzerotti et al., 198l; Armstrong et
al., 1981], pointing to the possibility of
scattering losses. However, in analyzing the
possible wave-particle interactions of electrons
in the torus, Thorne and Tsurutani [1979] found
that the maximum precipation flux allouef by
piteh angle scattering amounts to about 10 3w,
wel)l below the range required to account for the
X ray flux by electron bremsstrahlung. Further-
wmore, most of this energy stems from incident
electrons in the energy range of 0.15-3 HeV, for
which atmospheric extinction of UV emission
would become a major correction and for which
the X ray spectrum would be harder than
obsarved. Other scattering medes resomating
with 10 keV and leas depoait less energy iunto
the atmosphere [Thorne, 198]. On the basis of
Pioneer data, Thomsen and Sentman [1979] have
calculated even lower energy depoaition rates
for electroas undergoing pitch angle acattering
into the atmosphere. We conclude that electron
bremsstrahlung is not the source of the X ray
emission and most likely not of the UV emission
either.

4.4. Heavy Iou Precipitation

The inability of electron precipitation to
supply sufficient energy for the aurora and the
accompanying requirement for a mass lcading rate
in excess of the value inferred from cbservation
of the torus has led Thorne [1981, 198] and
Gehrels and Stone {1983] to propose that ions of
S and O, which dominate the ion component in the
Io torus [Bagenal and Sullivan, 1981], alsa
comprise the precipitating flux at Jupiter.
Evidence  for this 1ies in the existence of an
inward radizl gradient for the energized heavy
ion flux, indicating d4injection from the cuter
magnetosphere [Gehrels et al., 19811, and the
contrast between a constant flux measured
between 12 and 17 R, and a sharp decrease
between 6 and 12 R, fGehrels and Stons, 1982].
Thia indicates a rapid precipitation Jloss of
these heavy 1ion fluxes at a rate comparable to
the limit imposed by strong pitch angle diffu-
sion.

The scheme envisaged by Gehrels and Stone
[1983] is that Iogenic S and O plasma ions dif-
fuse outward from the torus, undergo nonadia-
batic acceleration by a process as yel not esta-
blished and subsequently diffuse inward as an
energetic flux distributicon, a large fraction of
which undergoes scattering into the loss cone
and precipitation inte Jupiter's atmosphere.
The energy associated with these particlea
results in highly-stripped ionization states,
and the subsequent slowing down in the atmo-
sphere invarlably results in radiative transi-
tions. [ From the observed loss rate of S and O
iony, ehrels and Stone [1983) have calculated
the power and flux delivered to Jupiter as a
function of fon energy. _We have used their dig;
tributions to calgula ted yield @

A -rays.that would be producad by the interaction
of these heavy ions with the hydrogen atmo-
sphere. The X ray flux will be confined to 0.52
keV {0) and 2.3 keV (S5) if 0 and S alone




.Tm

-

comprise the incident flux., Secondary electrons
will be low in both energy and yield.

The cross-sections used for this calcula-
tion were obtained from data for line production
ty proton bombardment given by Garcia et al.
{1973] with the appropriate correction for this
case of heavy ions incident on hydrogen. The
cross~sections become appreciable above energies
of about 10 keV/nucleon. The Voyager cosmic ray
experiment energy threshold of 6 MeV¥/nucleon was
extrapolated down to an energy of 0.6
MeV/nucleon by Gehrels and Stone [1983] through
the use of data obtained with the LECP instru-
pent [Armstrong et al., 19811, and we have
extrapolated below that to a2 cumulative power
level of “10'™ W in order to extend the calcula-
tion down to the energy at which characteristic
X ray production is no longer significant (V0.1
MeV/nucleon). The penetration of incident 0 and
S ions in the hydrogen atmosphers was determined
fron a range-energy table [Northcliffe = and
Schilling, 1970]. his range is small in- eom-
parison with that of* the cbsarved X rays so that
extinotion losses are negligible. We find that
the calculated X ray power from 0 icns amounts
to  about I'Bx 109 W and that from $ ions amounts
to about 10% W. Comparison with our observed
velues in Table 5 shows excellent agreement for
the oxygen-induced emission. The calculated
valuea will change somewhat when the effect of
ion charge =&tate is incorporated 1in the
enalysis, but the general correspondence, par-
ticularly in the relative proportions of O and S
line fluxes, i= clear indication that heavy ion
precipitation is responsible for Jupiter's X ray

- AUrora.

(\

aking into gonsideration the abundance of

M Just beyond the torus

imlgis et al., 1979), the composition of
Jupiter's upper atmosphere [Atreya et al., 1981]
and the appropriate croas-sections for line
emission [Garcia et al., 1973], proton precipi-
tation fails to mccount for the cbserved X ray
flux by a factor exceeding 10-.

The X ray observations to date show little
if any variation with time. This contrasts with
observations in the UV where substantial long
and short term variability bas been observed
[Broadfoot et al., 1981; Durrance et al., 98],
While the weak signal of these initial X ray
observations mekes variation harder to observe,
there does appear to be a real distinotion,
indicating the mechanism of - preduction at the
two wavelengths may not be identical. £&n oppor-
tunity of a closer look at this exists for the
1981 ERI observation during which Jupiter was
observed simultaneously by the Einstein Observe-
tory and the International Ultraviolet Explorer.

In summary, X ray emission from 0.2-3.0 keV
has been detected from the auroral zones of
Jupiter. The spectrum is soft, the total flux
relatively oconstant. Attempts to attribute the
scurce of the X ray flux to electron
bremastrahlung fail on the combined argument of
the total power and energy spectrum. On the
other hand, the expected yleid from energetic O
and 5 fons precipitating intc the atmosphere is
in good agreement with observations.

An EXOSAT observation of Jupiter 1s
currently scheduled which should yield more
information on the low-energy X ray spectrum and

Motzger et al.s
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time veriationas. Future observations with
increasingly sensitive X ray observatories allow
us to anticipate the possibility of positive
results from Saturn, Uranua, and Neptune as
well. Observations of the Jovian system with
such instruments will yield more detail, notably
on the interaction of energetic particles with
the Galilean satellites and Jupiter's rings.
Somedzy it should be possible to determine thelr
surface compositions In this manner,
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